27 research outputs found

    Perioperative management of liver transplantation with concurrent coronary artery disease: Report of two cases

    No full text
    Coronary artery disease (CAD), even if asymptomatic, has been known to complicate the perioperative management of patients undergoing liver transplantation. Perioperative outcome for such patients is worse than those without CAD despite improvement in risk stratification and management of CAD. We hereby report the successful perioperative management of two patients with CAD undergoing living-related liver transplantation. Maintaining systemic vascular resistance, goal-directed volume administration and surgical technique avoiding total clamping of IVC was the mainstay of stable intraoperative course. Moreover, a lower model for end stage liver disease (MELD) score at the time of liver transplant may also have been contributory to successful outcome in our patients

    Forest area estimation and reporting: implications for conservation, management and REDD

    No full text
    Periodic estimation, monitoring and reporting on area under forest and plantation types and afforestation rates are critical to forest and biodiversity conservation, sustainable forest management and for meeting international commitments. This article is aimed at assessing the adequacy of the current monitoring and reporting approach adopted in India in the context of new challenges of conservation and reporting to international conventions and agencies. The analysis shows that the current mode of monitoring and reporting of forest area is inadequate to meet the national and international requirements. India could be potentially over-reporting the area under forests by including many non-forest tree categories such as commercial plantations of coconut, cashew, coffee and rubber, and fruit orchards. India may also be under-reporting deforestation by reporting only gross forest area at the state and national levels. There is a need for monitoring and reporting of forest cover, deforestation and afforestation rates according to categories such as (i) natural/primary forest, (ii) secondary/degraded forests, (iii) forest plantations, (iv) commercial plantations, (v) fruit orchards and (vi) scattered trees

    Mutation analysis of the cathepsin C gene in Indian families with Papillon-Lefèvre syndrome

    No full text
    Abstract Background PLS is a rare autosomal recessive disorder characterized by early onset periodontopathia and palmar plantar keratosis. PLS is caused by mutations in the cathepsin C (CTSC) gene. Dipeptidyl-peptidase I encoded by the CTSC gene removes dipeptides from the amino-terminus of protein substrates and mainly plays an immune and inflammatory role. Several mutations have been reported in this gene in patients from several ethnic groups. We report here mutation analysis of the CTSC gene in three Indian families with PLS. Methods Peripheral blood samples were obtained from individuals belonging to three Indian families with PLS for genomic DNA isolation. Exon-specific intronic primers were used to amplify DNA samples from individuals. PCR products were subsequently sequenced to detect mutations. PCR-SCCP and ASOH analyses were used to determine if mutations were present in normal control individuals. Results All patients from three families had a classic PLS phenotype, which included palmoplantar keratosis and early-onset severe periodontitis. Sequence analysis of the CTSC gene showed three novel nonsense mutations (viz., p.Q49X, p.Q69X and p.Y304X) in homozygous state in affected individuals from these Indian families. Conclusions This study reported three novel nonsense mutations in three Indian families. These novel nonsense mutations are predicted to produce truncated dipeptidyl-peptidase I causing PLS phenotype in these families. A review of the literature along with three novel mutations reported here showed that the total number of mutations in the CTSC gene described to date is 41 with 17 mutations being located in exon 7.</p

    Deforestation and forest degradation in India - implications for REDD+

    No full text
    Reducing emissions from deforestation and forest degradation (REDD+) is considered as an important mechanism under the UNFCCC aimed at mitigating climate change. The Cancun Agreement on REDD mechanism has paved the way for designing and implementation of REDD+ activities, to assist countries experiencing large-scale deforestation and forest degradation. Contrary to the general perception, the present analysis shows that India is currently experiencing deforestation and forest degradation. According to the latest assessment of the Forest Survey of India, the net annual loss of forests is estimated to be 99,850 ha during the period 2007-2009, even though the total area under forests has increased. The REDD+ mechanism aims to provide financial incentives for reducing deforestation and forest degradation. India, despite having robust legislations, policies and remote sensing capabilities, is not ready to benefit from the emerging REDD+ mechanism, with potential flow of large financial benefits to rural and forest-dependent communities from international financial sources

    Mutation analysis of the cathepsin C gene in Indian families with Papillon-Lefèvre syndrome

    Get PDF
    BACKGROUND: PLS is a rare autosomal recessive disorder characterized by early onset periodontopathia and palmar plantar keratosis. PLS is caused by mutations in the cathepsin C (CTSC) gene. Dipeptidyl-peptidase I encoded by the CTSC gene removes dipeptides from the amino-terminus of protein substrates and mainly plays an immune and inflammatory role. Several mutations have been reported in this gene in patients from several ethnic groups. We report here mutation analysis of the CTSC gene in three Indian families with PLS. METHODS: Peripheral blood samples were obtained from individuals belonging to three Indian families with PLS for genomic DNA isolation. Exon-specific intronic primers were used to amplify DNA samples from individuals. PCR products were subsequently sequenced to detect mutations. PCR-SCCP and ASOH analyses were used to determine if mutations were present in normal control individuals. RESULTS: All patients from three families had a classic PLS phenotype, which included palmoplantar keratosis and early-onset severe periodontitis. Sequence analysis of the CTSC gene showed three novel nonsense mutations (viz., p.Q49X, p.Q69X and p.Y304X) in homozygous state in affected individuals from these Indian families. CONCLUSIONS: This study reported three novel nonsense mutations in three Indian families. These novel nonsense mutations are predicted to produce truncated dipeptidyl-peptidase I causing PLS phenotype in these families. A review of the literature along with three novel mutations reported here showed that the total number of mutations in the CTSC gene described to date is 41 with 17 mutations being located in exon 7

    Inland wetland mineral soils

    No full text
    This chapter provides supplementary guidance for estimating and reporting greenhouse gas (GHG) emissions and removals from managed lands with Inland Wetland Mineral Soils (IWMS) for all land-use categories (see Chapter 1 and decision tree in Chapter 1 in this supplement for what is specifically covered in this chapter in relationship to other chapters in this supplement). Information on Tier 1 default methods for Wetland Mineral Soil (WMS) is found in Table 2.3, Chapter 2, Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2006 IPCC Guidelines). This chapter covers inland managed lands with WMS; coastal lands with WMS are addressed in Chapter 4 (Coastal Wetlands) of this supplement. The distinction between inland and coastal zones is defined in Chapter 4. Constructed wetlands with IWMS are addressed in Chapter 6 (Constructed Wetlands for Wastewater Treatment) of this supplement

    Prediction of Tool Shape in Electrical Discharge Machining of EN31 Steel Using Machine Learning Techniques

    No full text
    In the electrical discharge machining (EDM) process, especially during the machining of hardened steels, changes in tool shape have been identified as one of the major problems. To understand the aforesaid dilemma, an initiative was undertaken through this experimental study. To assess the distortion in tool shape that occurs during the machining of EN31 tool steel, variations in tool shape were examined by monitoring the roundness of the tooltip before and after machining with a coordinate measuring machine. The change in out-of-roundness of the tooltip varied from 5.65 to 37.8 µm during machining under different experimental conditions. It was revealed that the input current, the pulse on time, and the pulse off time had most significant effect in terms of changes in the out-of-roundness values during machining. Machine learning techniques (decision tree, random forest, generalized linear model, and neural network) were applied for the prediction of changes in tool shape. It was observed that the results predicted by the random forest technique were more convincing. Subsequently, it was gathered from this examination that the usage of the random forest technique for the prediction of changes in tool shape yielded propitious outcomes, with high accuracy (93.67%), correlation (0.97), coefficient of determination (0.94), and mean absolute error (1.65 µm) values. Hence, it was inferred that the random forest technique provided better results in terms of the prediction of tool shape
    corecore